Home
Class 12
MATHS
If the inequality cot^(2)x + (k +1) cot ...

If the inequality `cot^(2)x + (k +1) cot x - (k-3) < 0` is true for at least one `x in (0, pi//2)`, then `k in `.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) + 6 gt 0 is

Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) + 6 gt 0 is

Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) + 6 gt 0 is

All x satisfying the inequality (cot^(-1) x)^(2) - 7 (cot^(-1) x) + 10 gt0 lie in the interval

The complete solution set of the inequality [cot^(-1)x]^(2)-6[cot^(-1)x]+9<=0 where [1] denotes greatest integer function,is

Solve the inequality tan^(-1)xgtcot^(-1)cot^(-1)x .

Solve the inequality tan^(-1)xgtcot^(-1)cot^(-1)x .

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is