Home
Class 10
MATHS
AD और PM त्रिभुजों ABC और PQR कि क्रमशः ...

AD और PM त्रिभुजों ABC और PQR कि क्रमशः मध्यिकाएँ है जबकि `Delta ABC ~ Delta PQR` है सिद्ध कीजिए कि `(AB)/(PQ)=(AD)/(PM)` है

Promotional Banner

Similar Questions

Explore conceptually related problems

AD and PM are medians of triangles ABC and PQR respectively where Delta ABC ~ Delta PQR . Prove that: (AB)/(PQ)=(AD)/(PM) .

If AD and PM are median of triangles ABC and PQR respectively where Delta ABC - Delta PQR , prove that (AB)/(PQ) = (AD)/(PM) .

If AD and PM are medians of triangles ABC and PQR respectively , where DeltaABC ~ DeltaPQR , prove that (AB)/(PQ)= (AD)/(PM) .

If Adand PM are medians of triangles ABC and PQR, respectively where DeltaABC ~ DeltaPQR , prove that (AB)/(PQ) =(AD)/(PM)

If Delta ABC ~ Delta PQR and 4A (Delta ABC) = 25 A (Delta PQR) then AB : PQ = ?

If AD and PM are medians of triangles ABC and PQR, respectively where triangleABC~ trianglePQR , Prove that (AB)/(PQ)=(AD)/(PM) . .

If in triangle ABC , D and E are the points on sides AC and BC, respectively such that DE || AB. F is the point on CE such that DF ||AE. If CE= 6cm and CF = 2.5 cm, then BC is equal to: त्रिभुज ABC में, D और E क्रमशः भुजाओं AC तथा BC के मध्य बिंदु हैं जो इस प्रकार ह कि DE || AB है F, CE पर स्थित ऐसा बिंदु है कि DF|| AE है | यदि CE= 6 सेमी और CF =2.5 सेमी है, तो BC किसके बराबर है ?

The ratio of the areas of two triangles ABC and PQR is 3:5 and the ratio of their heights is 5:3. The ratio of the bases of triangle ABC to triangle PQR is : दो त्रिभुजों ABC और PQR के क्षेत्रफलों का अनुपात 3 : 5 है तथा उनकी ऊंचाई का अनुपात 5 : 3 है | त्रिभुज ABC और त्रिभुज PQR के आधारों के बीच अनुपात ज्ञात करें|

In triangle ABC , D and E are the points on AB and AC respectively such that AD x AC = AB x AE. If angle ADE = angle ACB + 30^@ and angle ABC = 78^@ , then angle A =? त्रिभुज ABC में, D और E क्रमशः भुजा AB और AC पर स्थित ऐसे बिंदु हैं कि AD x AC = AB x AE है | यदि angle ADE = angle ACB + 30^@ है तथा angle ABC = 78^@ है, तो कोण A का मान क्या होगा ?

If AD and PM are medians of triangles ABC and PQR,respectively where triangleABC~trianglePQR ,prove that (AB)/(PQ)=(AD)/(PM) .