Home
Class 12
MATHS
(xi)*a^(4)+a^(2)b^(2)+b^(4)...

(xi)*a^(4)+a^(2)b^(2)+b^(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

In /_ABC, if c^(4)-2(a^(2)+b^(2))c^(2)+a^(4)+a^(2)b^(2)+b^(4)=0 then

If a^(4) + a^(2)b^(2) + b^(4) = 12, a^(2) + ab+ b^(2)=4 , find ab

Prove that 2b^(2)c^(2) +2c^(2)a^(2) +2a^(2)b^(2) -a^(4)-b^(4)-c^(4)= (a+b+c) (b+c-a) (c+a-b) (a+b-c)

Factorize: (a^(4)-8a^(2)b^(2)+16b^(4))-256a^(4)-6a^(2)b^(2)+9b^(4)-81

If b is the mean proportion between a and c, show that : (a^(4)+a^(2)b^(2)+b^(4))/(b^(4)+b^(2)c^(2)+c^(4))=a^(2)/c^(2)

If (a^(4)-2a^(2)b^(2)+b^(4))^(x-1)=(a-b)^(3)(a+b)^(-2) then x=

By how much is a^(4)+4a^(2)b^(2)+b^(4) more than a^(4)-8a^(2)b^(2)+b^(4)

If a^(4) + a^(2) b^(2) +b^(4)=8, a^(2) + b^(2) + ab= 4 find ab