Home
Class 11
MATHS
The straight line 3x+4y-12=0 meets the ...

The straight line `3x+4y-12=0` meets the coordinate axes at `Aa n dB` . An equilateral triangle `A B C` is constructed. The possible coordinates of vertex `C` (a) `(2(1-(3sqrt(3))/4),3/2(1-4/(sqrt(3))))` (b)`(-2(1+sqrt(3)),3/2(1-sqrt(3)))` (c)`(2(1+sqrt(3)),3/2(1+sqrt(3)))` (d)`(2(1+(3sqrt(3))/4),3/2(1+4/(sqrt(3))))`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt((4)/(3))-sqrt((3)/(4))=?(4sqrt(3))/(6) (b) (1)/(2sqrt(3))(c)1(d)-(1)/(2sqrt(3))

(2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+1)/(sqrt(3)-1)is

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

The value of (2 + sqrt(3))/(2- sqrt(3)) + (2- sqrt(3))/(2 + sqrt(3)) + ( sqrt(3) + 1)/(sqrt(3) -1) is

If a=(sqrt(3))/(2), then sqrt(1+a)+sqrt(1-a)=?(2-sqrt(3))(b)(2+sqrt(3))(c)((sqrt(3))/(2))(d)sqrt(3)

((2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)) simplifies to 16-sqrt(3)(b)4-sqrt(3)(c)2-sqrt(3) (d) 2+sqrt(3)

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/(2)) (b) ((2)/(3),(1)/(sqrt(3)))(c)((2)/(3),(sqrt(3))/(2)) (d) (1,(1)/(sqrt(3)))