Home
Class 10
MATHS
E" folve for "x:(1)/(x)-(1)/((x-2))=3,x!...

E" folve for "x:(1)/(x)-(1)/((x-2))=3,x!=0,2

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

l(x)=[(x(3e^((1)/(x))+4))/(2-e^((1)/(x))),x!=0;0,x=0

The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x+1)(x+3))/((x+2)(x+4))-e^(-x)) (x^(3)-cos x)=0 :

The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x))(((x+1)(x+3))/((x+2)(x+4))-e)(-x^(3)-cos x)=0

Let f(x)={[((e^(3x)-1))/(x),,x!=0],[3,,x=0]} then 2f'(0) is

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

lim_(x->0)(e^(2x)-1)/(3x)

Evaluate: lim_(x rarr0)((1+x)^((1)/(x))-e+(1)/(2)ex)/(x^(2))