Home
Class 12
MATHS
[lim(n rarr oo)(sin(pi)/(2n)*sin(2 pi)/(...

[lim_(n rarr oo)(sin(pi)/(2n)*sin(2 pi)/(2n)*sin(3 pi)/(2n)......sin((n-1)pi)/(n))^(1/n)" is equal to: "],[[" (A) "(1)/(2)," (B) "(1)/(3)," (C) "(1)/(4)," (D) "(3)/(4)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_( n to oo) (sin ""(pi)/(2n) . sin ""(2pi)/(2n). sin ""(3pi)/(2n)......sin""((n -1) pi)/(2n))^(1//n) is equal to

lim_(n rarr oo) 1/n[sin(pi/(2n))+sin(pi/n)+sin((3pi)/2n)+........+sin(pi/2)] =

lim_(n rarr oo)n sin\ (2 pi)/(3n)*cos\ (2 pi)/(3n)

The value of lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1/n) is equal to

The value of lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1//n) is equal to

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to :

underset(nrarroo)"lim"[sin'(pi) /(n)+sin'(2pi) /(n)+"......"+sin((n-1))/(n) pi ] is equal to :

2 ^ (n-1) sin ((pi) / (n)) sin ((2 pi) / (n)) ..... sin ((n-1) / (n)) pi equals: