Home
Class 12
[" Total number of ordered pairs "(x,y)]...

[" Total number of ordered pairs "(x,y)],[" satisfying "(sin^(2)x+(1)/(x^(2)))=2sin x*sin^(2)y],[x in(-pi,0)uu(0,pi)" and "y in[0,2 pi]" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Total no.of orderd pairs (x,y) satisfying x(sin^(2)x+(1)/(x^(2)))=2sin x,sin^(2)y, where x in(-pi,0)uu(0,pi) and y in[0,2 pi] is/are

Total no. of orderd pairs (x,y) satisfying x(sin^2 x+ 1/x^2)=2sinx,sin^2y, where x in (-pi,0)uu(0,pi) and y in[0,2pi] is/are

Find the total no. of orderd pairs (x,y) satisfying x(sin^2 x+ 1/x^2)=2sinxsin^2y, where x in (-pi,0)uu(0,pi) and y in[0,2pi] .

The total number of ordered pairs (x,y) satisfying |x|+|y|=4, sin((pi)x^(2)//3)=1 is equal to

The total number of ordered pair(x,y) satisfying |x|+|y|=4,sin((pi x^(2))/(3))=1 is equal to

The total number of ordered pairs (x, y) satisfying |y|=cosx and y=sin^(-1)(sinx) , where x in [-2pi, 3pi] is equal to :

The total number of ordered pairs (x, y) satisfying |y|=cosx and y=sin^(-1)(sinx) , where x in [-2pi, 3pi] is equal to :

Total number of ordered pairs (x,y) satisfying Iyl=cos x and y=sin^(-1)(sin x) where |x|<=3 pi is equal to