Home
Class 11
MATHS
Prove that n(n-1)(n-2) ...(n-r+1)=(n!)/(...

Prove that `n(n-1)(n-2) ...(n-r+1)=(n!)/((n-r)!). `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)(n!)/((n-r+1)!)=(n!)/((n-r)!)

Prove that (n-r+1)((n!)/((n-r+1)!))=((n!)/((n-r)!))

Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)

Prove that n.^(n-1)C_(r-1)=(n-r-1) ^nC_(r-1)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)= ((n+1)!)/ (r!(n-r+1)!) .

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that .^(n-1)P_(r)+r.^(n-1)P_(r-1)=.^(n)P_(r)

Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!) (iii) (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)