Home
Class 12
MATHS
[" If "x sqrt(1)+y+y sqrt(1+x)=0," show ...

[" If "x sqrt(1)+y+y sqrt(1+x)=0," show that "dy/dx=(-1)/((1+x)^(2))],[x sqrt(1+y)=-y sqrt(1+x)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .

If x sqrt(y+1)+y sqrt(x+1)=0 & x!=y, then (dy)/(dx)=

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y) ,show that dy/dx=sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2) = a(x-y), show that dy/dx = sqrt((1-y^2)/(1-x^2))

If sqrt(y+x)+sqrt(y-x)=c show that (dy)/(dx)=(y)/(x)-sqrt(((y^(2))/(x^(2)))-1)