Home
Class 12
MATHS
Statement 1: sum(0 leqileqj) sum( leqn) ...

Statement 1: `sum_(0 leqileqj) sum_( leqn) C(n,i) C(n,j)= 2^(2n)-C(2n,n)` Statement 2: `(sum_(r=0)^n) C(n,r))^2= sum_(r=0)^n (C(n,r))^2+2sum_(0 leqi leqj) sum_(leqn) C(n,i) C(n,j)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1:sum_(0<=i<=j)sum_(<=n)C(n,i)C(n,j)=2^(2n)-C(2n,n) Statement 2:(sum_(r=0)^(n))C(n,r))^(2)=sum_(r=0)^(n)(C(n,r))^(2)+2sum_(0<=i<=j)sum_(<=n)C(n,i)C(n,j)

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

If sum_(r=0)^(n)(2r)/(C(n,r))=sum_(r=0)^(n)(n^(3)-3n+3)/(C)(n,r)

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

Prove that sum_(0lt=i)sum_(ltjlt=n) (C_i +C_j)= n.2^n

Prove that sum_(0lt=i)sum_(ltjlt=n) (C_i +C_j)= n.2^n

Find the sum sum_(r=1)^n r^2(^n C_r)/(^n C_(r-1)) .