Home
Class 12
MATHS
lim(x->1) (1+x+[x-1]+[1-x]) is equal to ...

`lim_(x->1) (1+x+[x-1]+[1-x])` is equal to (where [ ] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

lim_(x rarr1)(1+x+[x-1]+[1-x]) is equal to x rarr1 (where [1 denotes greatest integer function)

int_(-10)^(0)(1(2[x])/(3x-[x])/(2[x])/(3x-[x]))dx is equal to (where [*] denotes greatest integer function.) is equal to (where [*] denotes greatest integer function.)

The value of lim_(x rarr2)([2-x]+[x-2]-x) equals (where [.] denotes greatest integer function)

The value of lim_(xto1)({1-x+[x-1]+[1-x]} (where [.] denotes the greatest integral function) is

If lim_(x rarr1)(3-x+a[x-1]+b[x+1]) exists (where [ ] denotes the greatest integer function),then value of a + b

lim_(x rarr1)(1-x+[x-1]+[1-x])= where [.] denotes the greatest integer function

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )