Home
Class 9
MATHS
" (ii) "(x^(a-b))^(a+b)*(x^(b-c))^(b+c)*...

" (ii) "(x^(a-b))^(a+b)*(x^(b-c))^(b+c)*(x^(c-a))^(c+a)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: (i)\ (x^(a-b))^(a+b)\ (x^(b-c))^(b+c)\ (x^(c-a))^(c+a)=1 (ii)\ {(x^(a-a^(-1)))^(1/(a-1))}^(a/(a+1))=x

Show that: (x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1{(x^(a)-a^((-1)))^((1)/(a-1))}^((a)/(a+1))=x

Simplify (x^(a-b))^(a+b).(x^(b-c))^(b+c).(x^((c-a)))^((c+a)) where x ne 0 and x ne 1 .

Show that (x^(a+b))^(a-b)times(x^(b+c))^(b-c)times(x^(c+a))^(c-a)=1

(x^a/x^b)^(a+b).(x^b/x^c)^(b+c).(x^c/x^a)^(c+a)

((x^(a))/(x^(b)))^(a+b)*((x^(b))/(x^(c)))^(b+c)*((x^(c))/(x^(a)))^(c+a)=? a.0 b.x^(abc) c.x^(a+b+c)d.1=? a.0

Prove that. (i) sqrt(x^(-1) y) .sqrt(y^(-1) z) . Sqrt(z^(-1) x) = 1 (ii) ((1)/(x^(a-b)))^((1)/(a-c)).((1)/(x^(b-c))).((1)/(x^(c-b)))^((1)/(c-b))= 1 (iii) (x^(a(b-c)))/(x^(b(a-c))) div ((x^(b))/(x^(a))) (iv) ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^a)/(x^b))^(a+b)\ ((x^b)/(x^c))^(b+c)((x^c)/(x^a))^(c+a)=1