Home
Class 12
MATHS
If A+B+C=pi, prove that : sin ((B+C)/(2)...

If `A+B+C=pi`, prove that : `sin ((B+C)/(2)) + sin ((C+A)/(2)) + sin( (A+B)/(2) )= 4cos ((pi-A)/(4)) cos( (pi-B)/(4)) cos((pi-C)/(4))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : (sin ((B+C)/(2)) + sin ((C+A)/(2)) + sin( (A+B)/(2) )) equals (4cos ((pi-A)/(4)) cos( (pi-B)/(4)) cos((pi-C)/(4))) .

cos ((A) / (2)) + cos ((B) / (2)) - cos ((C) / (2)) = 4cos ((pi + A) / (4)) cos ((pi + B) / (4)) cos ((pi-c) / (4))

In triangle ABC , prove that sin .(A)/(2)+ sin. (B)/(2) -sin. (C)/(2)=-1+4 cos.(pi-A)/(4)cos. (pi-B)/(4)sin. (pi-C)/(4)

If A+B+C=pi, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))=1+4sin((pi-B)/(4))sin((pi-B)/(4))*sin((pi-C)/(4))

If A+B+C=pi then prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))-1=4sin((pi-A)/(4))sin((pi-B)/(4))sin((pi-C)/(4))

If A+B+C=pi then prove that cos((A)/(2))+cos((B)/(2))+cos((C)/(2))=4cos((pi-A)/(4))cos((pi-B)/(4))cos((pi-C)/(4))

If A, B, C are the angles in a triangle then prove that sin .(A)/(2)+ sin . (B)/(2)+ sin .(C)/(2) =1 +4 sin((pi-A)/(4)) sin ((pi-B)/(4)) sin((pi-C)/(4))

In triangle ABC, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))<=(3)/(2) Hence,deduce that cos((pi+A)/(4))cos((pi+B)/(4))cos((pi+C)/(4))<=(1)/(8)

In Delta ABC , prove that cos. (A)/(2)+cos. (B)/(2) - cos .(C)/(2)=4cos .(pi+A)/(4) cos. (pi+B)/(4) cos. (pi-C)/(4)