Home
Class 12
MATHS
If f(x) = { sin[x] /[x],[x] != 0 ; 0, [x...

If f(x) = { `sin[x] /[x],[x] != 0 ; 0, [x] = 0}` , Where[.] denotes the greatest integer function, then `lim_(x rarr 0) f(x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x,x 0 then lim_(x rarr0)f(x) is equal to

Let f(x) = x(-1)^([1//x]); x != 0 where [.] denotes greatest integer function, then lim_(x rarr 0) f (x) is :

Let f(x)=x(-1)^([1/x]);x!=0 where [.] denotes greatest integer function,then lim_(x rarr0)f(x) is :

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

if f(x) ={{:(2x-[x]+ xsin (x-[x]),,x ne 0) ,( 0,, x=0):} where [.] denotes the greatest integer function then