Home
Class 12
MATHS
[" Example "3" .If "f'" is derivable at ...

[" Example "3" .If "f'" is derivable at "x=],[lim_(x rarr a)(xf(a)-af(x))/(x-a)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f is derivable at x =a,then lim_(xto a )( (xf(a) -af( x))/(x-a) )

If 'f' is derivable at x =a, find underset(xrarra)lim(xf(a)-af(x))/(x-a)

Write the value of (lim)_(x rarr a)(xf(a)-af(x))/(x-a)

If f is derivable at x =a,then underset(xto a ) lim( (xf(a) -af( x))/(x-a) )

If f is derivable at x =a,then underset(xto a ) lim( (xf(a) -af( x))/(x-a) )

If f(x) is derivable at x = a,show that lim_(xrarra)(xf(a)-af(x))/(x-a)=f(a)-af'(a)

lim_(xrarra)(xf(a)-af(x))/(x-a)=f(a)-(a)f'(a) .

It is given that f'(a) exists,then lim_(xrarra)(xf(a) - af(x))/(x - a) is :

If f(x) is differentiable at x=a then show that lim_(xrarr0)(x^2f(a)-a^2f(x))/(x-a)=2af(a)-a^2f^1(a)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)