Home
Class 9
MATHS
[" Tatere "],[[" (i) "x^(3)-3x^(2)-9x," ...

[" Tatere "],[[" (i) "x^(3)-3x^(2)-9x," (iv) "2y^(3)+y^(2)-2y],[-x+2," ( "32x+20]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise: (i) x^(3)-2x^(2)-x+2 (ii) x^(3)-3x^(2)-9x-5 (iii) x^(3)+13x^(2)+32x+20 (iv)

Factorise (i) x ^(2) - 2x ^(2) - x +2 (ii) x ^(3) - 3x ^(2) - 9x -5 (iii) x ^(3) + 13 x ^(2) + 32 x + 20 (iv) y ^(3) + y ^(2) -y -1

If 9x^(2)+y^(2)+6x=2y-2 then 3x+y is

The equation of parabola through (-1,3) and symmetric with respect to x-axis and vertex at origin is (i) y^(2) = - 9x (ii) y^(2) = 9 x (iii) y^(2) = 3 x (iv) y^(2) = - 3x

Subtract 3x^(3) - 5x^(2) - 9x + 6 " from " 2x^(3) + 3y^(2) - 4z^(2) and x^(2) - 2y^(2) +z^(2)

{:("Column" A ,, "Column" B), ((3x^(2) - 5)- (2x^(2) - 5 + y^(2)) ,, (a) x^(2) + xy + y^(2)) , (9x^(2) - 16y^(2) ,, (b) 2) , ((x^(3) - y^(3))/(x-y) ,, (c) (9x + 16y) (9x - 16y)) , ("The degree of " (x + 2) (x+3) ,, (d) x^(2) - y^(2)) , (,, (e) 1) , (,, (f) (3x + 4y) (3x - 4y)):}

Divide 14x^(3)y^(2)+8x^(2)y^(3)-32x^(2)y^(5) by -2xy^(2)

(x+y)^(3)-(x-y)^(3) can be factorized as 2y(3x^(2)+y^(2)) (b) 2x(3x^(2)+y^(2))2y(3y^(2)+x^(2)) (d) 2x(x^(2)+3y^(2))