Home
Class 12
MATHS
Let A be the greatest value of the funct...

Let A be the greatest value of the function `f(x) = log_x [x],` (where ) denotes greatest integer function) and B be the least value of the function `g(x) = |sin x| + |cos x|,` then:

Promotional Banner

Similar Questions

Explore conceptually related problems

let A be the greatest value of the function f(x)=log _(x) [x], (where [.] denotes gratest integer function) and B be the least value of the function g (x) = |sin x | +|cos x| , then :

let A be the greatest value of the function f(x)=log _(x) [x], (where [.] denotes gratest integer function) and B be the least value of the function g (x) = |sin x | +|cos x| , then :

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

The domain of function f(x)=sqrt(log_([x])|x|) (where denotes greatest integer function),is

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

The domain of the function f(x) =[x]sin pi/[x+1] , where [] denote greatest integer function is: