Home
Class 10
MATHS
" Prone that tan "^(2)A-tan^(2)B=(sin^(2...

" Prone that tan "^(2)A-tan^(2)B=(sin^(2)A-sin^(2)B)/(cos^(2)A-cos^(2)B)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: tan(A+B).tan(A-B)=(sin^(2)A-sin^(2)B)/(cos^(2)A-sin^(2)B).

Show that tan^2A-tan^2B=(sin^2A-sin^2B)/(cos^2Acos^2B)

Prove the following identities : tan^(2) A - tan^(2) B = (sin^(2) A - sin^(2) B)/ (cos^(2) A . cos^(2) B)

Prove that :(tan(A+B))/(cot(A-B))=(sin^(2)A-sin^(2)B)/(cos^(2)A-sin^(2)B)

Prove the following : tan^2A-tan^2B=(sin^2A-sin^2B)/(cos^2Acos^2B) .

Prove the following identities: tan^(2)A-tan^(2)B=(cos^(2)B-cos^(2)A)/(cos^(2)B cos^(2)A)=(sin^(2)A-sin^(2)B)/(cos^(2)A cos^(2)B)(sin A-sin B)/(cos A+cos B)+(cos A-cos B)/(sin A+sin B)=0

Prove that tan^2A - tan^2B = (sin(A+B).sin(A-B))/(cos^2A.cos^2B

Prove the following tan^2A- tan^ 2B=(sin^2A-sin^2B)/(cos^2A*cos^2B) =(cos^2B-cos^2A) /(cos^2A*cos^2B)

Prove that :(tan(A+B))/("cot"(A-B))=(sin^2A-sin^2B)/(cos^2A-sin^2B)

"Prove that" tan (A+B) - tan (A - B) = (sin2 B)/(cos^(2)B - sin^(2) A).