Home
Class 11
MATHS
theta1 and theta2 are the inclination ...

`theta_1` and `theta_2` are the inclination of lines `L_1a n dL_2` with the x-axis. If `L_1a n dL_2` pass through `P(x_1,y_1)` , then the equation of one of the angle bisector of these lines is (a) `(x-x_1)/(cos((theta_1-theta_2)/2))=(y-y_1)/(sin((theta_1-theta_2)/2))` (b)`(x-x_1)/(-sin((theta_1-theta_2)/2))=(y-y_1)/(cos((theta_1-theta_2)/2))` (c)`(x-x_1)/(sin((theta_1-theta_2)/2))=(y-y_1)/(cos((theta_1-theta_2)/2))` (d)`(x-x_1)/(-sin((theta_1-theta_2)/2))=(y-y_1)/(cos((theta_1-theta_2)/2))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

theta_(1) and theta_(2) are the inclination of lines L_(1) and L_(2) with the x axis.If L_(1) and L_(2) pass through P(x,y) ,then the equation of one of the angle bisector of these lines is

x=sin^(-1)((2theta)/(1+theta^(2))),y=sec^(-1)(sqrt(1+theta^(2)))

(cos^(2)theta(1-cos theta))/(sin^(2)theta(1-sin theta))=(1+sin theta)/(1+cos theta)

If 0lt theta_2 lt theta_1 lt pi/4, cos(theta_1+theta_2)=3/5 and cos(theta_1-theta_2)=4/5 then sin2theta_1=

The angle between the pair of lines y^(2)cos^(2)theta-xy cos^(2)theta+x^(2)(sin^(2)theta-1)=0 is

The equation of tangent to the curve x=a(theta+ sin theta), y=a (1+ cos theta)" at "theta=(pi)/(2) is

If 0

If sin(theta)_(1)+sin(theta)_(2)+sin(theta)_(3)=1 then cos(theta)_(1)+cos(theta)_(2)+cos(theta)_(3)=

The equation of the locus of the point of intersection of the straight lines x sin theta+(1-cos theta)y=a sin theta and x sin theta-(1-cos theta)y+a sin theta=0 is

(1+sin2 theta-cos2 theta)/(1+sin2 theta+cos2 theta)=tan theta