Home
Class 10
MATHS
" (i) "g(x)=x^(2)-3,f(x)=2x^(4)+3x^(3)-2...

" (i) "g(x)=x^(2)-3,f(x)=2x^(4)+3x^(3)-2x^(2)-9x-12

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether the polynomial f(x)=x^(2)-3 is a factor of the polynomial g(x) where g(x)=2x^(4)+3x^(3)-2x^(2)-9x-12 .

In each of the following cases, use factor theorem to find whether g(x) is a factor of the polynomial p(x) or not. p(x)= 2x^(4)+3x^(3)-2x^(2)-9x-12, g(x)= x^(2)-3

f(x)=4x^(3)-12x^(2)+14x-3,g(x)=2x-1

Let f(x)=ln x&g(x)=(x^(4)-x^(3)+3x^(2)-2x+2)/(2x^(2)-2x+3) The domain of f(g(x)) is-

f(x)=3x^(3)+x^(2)-20x+12,g(x)=3x-2

f(x)=2x^(3)-9x^(2)+x+12,g(x)=3-2x

f(x)=3x^(4)+17x^(3)+9x^(2)-7x-10;g(x)=x+

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

f(x)=9x^(3)-3x^(2)+x-5,g(x)=x-(2)/(3)