Home
Class 8
MATHS
x-(1)/(4)(x-(2-x)/(6))=(2x+8)/(3)-3...

`x-(1)/(4)(x-(2-x)/(6))=(2x+8)/(3)-3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve :x-(2x+8)/(3)=(1)/(4)(x-(2-x)/(6))-3

x-(2x + 8) / (3) = (1) / (4) (x- (2-x) / (6))-3

Observe the following pattern (1x2)+(2x3)=(2x3x4)/(3)(1x2)+(2x3)+(3x4)=(3x4x5)/(3)(1x2)+(2x3)+(3x4)+(4x5)=(4x5x6)/(3) and find the of (1x2)+(2x3)+(3x4)+(4x5)+(5x6)

(3x+1)/(6)+(2x-3)/(7)=(x+3)/(8)+(3x-1)/(14)

(2x-1)/(3)+(3x+2)/(2)+7=(1)/(6)+(4x+3)/(6)

(2x-1)/(3)+(3x+2)/(2)+7=(1)/(6)+(4x+3)/(6)

IF sin ^(-1) ""(x-(x^(2))/(2)+(x^(3))/(4)-(x^(4))/(8)+…….)=(pi)/(6) , when |x|lt 2 then x =

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Solve : x-(2x+8)/3=1/4(x-(2-x)/6)-3