`(c+3)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

(a-b)^3+(b-c)^3+(c-a)^3

Factorize a(b^(3)-c^(3))+b(c^(3)-a^(3))+c(a^(3)-b^(3))

Factorize: a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3

a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3

the value of the determinant |(0, b^(3)-a^(3),c^(3)-a^(3)),(a^(3)-b^(3),0,c^(3)-b^(3)),(a^(3)-c^(3),b^(3)-c^(3),0)| is equal to -

Factioze a(b^(2) -c^(3)) + b(c^(3) -a^(3)) + c(a^(3) -b^(3))

Evaluate : |[0, (a-b)^3, (b-c)^3], [(b-a)^3, 0, (c-a)^3],[(c- b)^3, (a-c)^3, 0]|

Express each of the following in factors form, a^(3)(b- c) ^(3) +b^(3) (c-a) ^(3)+ c^(3) (a-b) "^(3)

Prove that 8a^3-(a+b)^3-(a-c)^3-(c-b)^3=3(a-b)(a+c)(2a+b-c)