Home
Class 12
MATHS
If n is an odd positive interger, then ...

If n is an odd positive interger, then
`((cosA+cosB)/(sinA-sinB))^(n)+((sinA+sinB)/(cosA-cosB))^(n)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

((cosA+cosB)/(sinA-sinB))^(2012)+((sinA+sinB)/(cosA-cosB))^(2012)=

Find the value of ((cosA+cosB)/(sinA-sinB))^(n)+((sinA+sinB)/(cosA-cosB))^(n) (where, n is an even)

If none of the denominators is zero, prove that. ((cosA+cosB)/(sinA-sinB))^(n)+((sinA-sinB)/(cosA+cosB))^(n) = {(2cot^(n)((A-B)/(2)), if n "is even"),(0, if n "is odd"):} .

(cosA+cosB)^2+(sinA-sinB)^2 is equal to

(sinA-sinB)/(cosA+cosB)+(cosA-cosB)/(sinA+sinB)=0 .

Prove that ((cos A+cos B)/(sinA-sinB))^(n)+((sinA+sinB)/(cos A-cosB))^(n) =2cot^(n)""(A-B)/(2) or 0, accordingly as n is even or odd.

Prove that (cosA-cosB)^2+(sinA-sinB)^2=4sin^2((A-B)/2)

Prove that: (cosA-cosB)^(2)+(sinA-sinB)^(2)=4sin^(2)(A-B)/(2)

(sinA+sinB)/(cosA-cosB)+(cosA+cosB)/(sinA-sinB)=?

Show that (1+sinA)/(cosA)+(cosB)/(1-sinB)=(2sinA-2sinB)/(sin(A-B)+cosA-cosB)