Home
Class 12
[" Let "f(x)" be a polynomial of degree ...

[" Let "f(x)" be a polynomial of degree three satisfying "f(0)=-1" and "f(1)=0" also,"theta" is a station "],[" of "f(x)" does not have an extremum at "x=0" ,then the valueof the integral "int(f(x))/(x^(2)-1)dx" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a polynomial of degree three f(0)=-1 and f(1)=0. Also,0 is a stationary point of f(x). If f(x) does not have an extremum at x=0, then the value of integral int(f(x))/(x^(3)-1)dx, is

Let f(x) be a polynomial of degree three f(0) = -1 and f(1) = 0. Also, 0 is a stationary point of f(x). If f(x) does not have an extremum at x=0, then the value of integral int(f(x))/(x^3-1)dx, is

Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f''(0)=6 , then int_(-1)^(2) f(x) is equal to

Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f''(0)=6 , then int_(-1)^(2) f(x) is equal to

Let f(x) be a polynomial satisfying f(0)=2f'(0)=3 and f'(x)=f(x) then f(4) equals

Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) then f(4) equals

Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) then f(4) equals

Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) then f(4) equals