Home
Class 11
MATHS
Prove that: (sin A+2sin3A+sin5A)/(sin3A+...

Prove that: `(sin A+2sin3A+sin5A)/(sin3A+2sin5A+sin7A)=(sin3A)/(sin5A)`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that : (sinA+2sin3A+sin5A)/(sin3A+2sin5A+sin7A)=(sin3A)/(sin5A)

(sin6A+sin2A+2sin4A)/(sin7A+sin3A+2sin5A)=(sin4A)/(sin5A)

(sin6A+sin2A+2sin4A)/(sin7A+sin3A+2sin5A)=(sin4A)/(sin5A)

sin A+sin3A+sin5A+sin7A=

sin A+ sin 3A+ sin 5A + sin 7A=

sin A sin2A + sin3A sin6A-sin4A sin5A = 0

(sin A + 2 sin 3 A + sin 5 A) / (sin 3 A + 2 sin 5 A + sin 7 A) = (sin3A) /(sin 5 A)

Prove that: (sinA+sin3A+sin5A)/(cos A+cos3A+cos5A)=tan3A

Prove that (sinA+sin3A+Sin5A)/(cosA+cos3A+cos5A)=tan3A

Prove that: (cos5A+cos3A+cosA)/(sin5A-sin3A+sinA)=cotA