Home
Class 8
MATHS
{((-2)/(3))^(-2)}^(2)...

`{((-2)/(3))^(-2)}^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(2)+2^(2)+3^(2)+4^2)/(4!) +.. Is

Let H_(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n) , then the sum to n terms of the series (1^(2))/(1^(3))+(1^(2))/(1^(3))+(2^(2))/(2^(3))+(1^(2)+2^(2)+3^(2))/(1^(3)+2^(3)+3^(3))+ . . . , is

Simplify: (-(1)/(2))^(3)xx(2^(2))/(((2)/(3))^(2))

The value of the determinant |{:(1^(2),2^(2),3^(2),4^(2)),(2^(2),3^(2),4^(2),5^(2)),(3^(2),4^(2),5^(2),6^(2)),(4^(2),5^(2),6^(2),7^(2)):}| is

The value of 2^(3^(2^(3)))-:[(2^(3))^(2)]^(3)

((1)/(2), (2)/(2) )/(1^3) + ((2)/(2) , (3)/(2) )/( 1^3 + 2^3) + ((3)/(2) , (4)/(2) ) / (1^(3) + 2^(3) + 3^(3) ) + ..... n terms

(((1)/(2))*((2)/(2)))/(1^(3))+(((2)/(2))*((3)/(2)))/(1^(3)+2^(3))+(((3)/(2))*((4)/(2)))/(1^(3)+2^(3)+3^(3))+...=

1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3))/(4!)+

Multiply the (3)/(2) p ^(2) + (2)/(3) q ^(2), (2p ^(2) - 3q ^(2))