Home
Class 11
MATHS
[(a,b),(-b,a)][(a,-b),(b,a)]...

`[(a,b),(-b,a)][(a,-b),(b,a)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = ( a, b, c) and R = {(a, a), (b, b), (a, b), (b, a), (b, c)} be a relation on A, then R is

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 . If a = alpha^(2)+beta^(2)+gamma^(2),b= alphabeta+betagamma+gammaalpha the value of |{:(a,b,b),(b,a,b),(b,b,a):}| is

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 . If a = alpha^(2)+beta^(2)+gamma^(2),b= alphabeta+betagamma+gammaalpha the value of |{:(a,b,b),(b,a,b),(b,b,a):}| is

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 . If a = alpha^(2)+beta^(2)+gamma^(2),b= alphabeta+betagamma+gammaalpha the value of |{:(a,b,b),(b,a,b),(b,b,a):}| is

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 . If a = alpha^(2)+beta^(2)+gamma^(2),b= alphabeta+betagamma+gammaalpha the value of |{:(a,b,b),(b,a,b),(b,b,a):}| is

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0 . Then the minimum value of ("det.(A)")/(b) is

Show that abs{:(b-c,c-a,a-b),(c-a,a-b,b-c),(a-b,b-c,c-a):}=0.