Home
Class 11
MATHS
log(4)(x^(2)-1)-log(4)(x-1)^(2)=log(4)sq...

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

(log_(4)x-2)*log_(4)x=(3)/(2)(log_(4)x-1)

Solve : (3)/(2)log_(4)(x+2)^(2)+3=log_(4)(4-x)^(3)+log_(4)(6+x)^(3) .

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

Solve for x:log_(2)(4(4^(x)+1))*log_(2)(4^(x)+1)=log_((1)/(sqrt(3)))(1)/(sqrt(8))

" If ||log_(3)x|-1|^(log_(3)^(2)x+3)=||log_(3)x|-1|^(log_(sqrt(7))x^(4)-4 ) then "

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

log_(sqrt(2))sqrt(x)+log_(2)x log_(4)(x^(2))+log_(8)(x^(3))+log_(16)(x^(4))=40 then x is equal to

If log_(sqrt(2)) sqrt(x) +log_(2)x + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-