Home
Class 12
MATHS
lim(x->-2) (x^4+2x^3+3x^2+5x-2)/(x^5+3x^...

`lim_(x->-2) (x^4+2x^3+3x^2+5x-2)/(x^5+3x^4+2x^3+3x^2+7x+2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(x to -2)"Lt" (x^(4)+2x^(3)+3x^(2)+5x-2)/(x^5+3x^(4)+2x^(3)+3x^(2)+7x+2)=

lim_(x->1)(x^4-3x^2+2)/(x^3-5x^2+3x+1)

find lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))

lim_(x rarr-2)((x^(5)+2x^(4)+x^(2)+3x+2)/(x^(4)+2x^(3)+3x^(2)-5x-22))=

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

Evaluate the following lim_(xto0) (3x^2 +4x -1) (x^4+2x^3-3x^2 +5x+2)

Show that Lt_(xto-2)((x^(5)+2x^(4)+x^(2)+3x+2)/(x^(4)+2x^(3)+3x^(2)-5x-22))=-3/5

lim_(x rarr1)(x^(4)-3x^(2)+2)/(x^(3)-5x^(2)+3x+1)

lim_(x rarr1)((x^(4)-3x^(2)+2)/(x^(3)-5x^(2)+3x+1))

lim_(x rarr oo) (3x^(3) + 2x^(2) - 7x + 9)/(4x^(3) + 9x -2)