Home
Class 14
MATHS
Prove that a^4 + b^4 + c^4 > abc(a +b +C...

Prove that `a^4 + b^4 + c^4 > abc(a +b +C),` where `a, b, c` are different positive real numbers.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that a^(4)+b^(4)+c^(4)>abc(a+b+c), where a,b,c>0

If log_(b) a. log_(c ) a + log_(a) b. log_(c ) b + log_(a) c. log_(b) c = 3 (where a, b, c are different positive real number ne 1 ), then find the value of a b c.

Prove that a^4+b^4+c^4>abc(a+b+c). [a,b,c are distinct positive real number]..

If (log)_b a(log)_c a+(log)_a b(log)_c b+(log)_a c(log)_bc=3 (where a , b , c are different positive real numbers !=1), then find the value of a b c .

If log_b a log_c a+log_a blog_c b+log_a clog_b c=3(where a,b,c are different positive real number !=1) then find the value of abc

If 49392=a^4b^2c^3, find the value of a ,\ b\ a n d\ c , where a ,\ b\ a n d\ c are different positive primes.

If 49392=a^(4)b^(2)c^(3), find the value of a,b and c, where a,b and c are different positive primes.

If 27 abc>= (a+b+c)^3 and 3a +4b +5c=12 then 1/a^2+1/b^3+1/c^5=10 , where a, b, c are positive real numbers. Statement-2: For positive real numbers A.M.>= G.M.

If 27 abc> (a+b+c)^3 and 3a +4b +5c=12 then 1/a^2+1/b^3+1/c^5=10, where a, b, c are positive real numbers. Statement-2: For positive real numbers A.M.>= G.M.

log_(a)a*log_(c)a+log_(c)b*log_(a)b+log_(a)c*log_(b)c=3 (where a,b,c are different positive real nu then find the value of abc.