Home
Class 12
MATHS
The range of the function y=f(x)=sin [x...

The range of the function `y=f(x)=sin [x],-pi/4 lt x lt pi/4`, where [x] denotes the greatest integer `leq x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The rangeof the function y=f(x)=sin[x] , (-pi)/(4)lt x lt (pi)/(4) , where [x] denotes the greatest integer le x, is :

The range of the function f(x)=cos[x] , -pi//4 lt x lt pi//4 , where [x] denotes the greatest integer lex , is :

The range of the function f(x) = sin [x], -(x)/(4) lt x lt (x)/(4) where [x] denotes the greatest integer le x , is

The range of the function y=f(x)=sin[x],-(pi)/(4)

The range of the function f(x)=cos[x],-(pi)/(4)

The range of the function: f(x) = tan^(-1)[x], -pi/4 le x le pi/4 where [.] denotes the greatest integer function:

The range of the function f(x) = cos[x] where -pi/2 lt x lt pi/2 is

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

The range of the function f(x)=(sin(pi[x^(2)+1]))/(x^(4)+1), where [.] denotes the greatest integer function,is