Home
Class 12
MATHS
If f(x)=(x-4)/(2sqrt(x)), then f^(prime)...

If `f(x)=(x-4)/(2sqrt(x))`, then `f^(prime)(1)` is a. `5/4` b. `4/5` c. `1` d. 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-4)/(2sqrt(x)),backslash then f'(1) is (5)/(4) b.(4)/(5) c.1 d.0

If f(x)=xtan^(-1)x , find f^(prime)(sqrt(5)) .

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

1.If f(x)=((x^(2)-4)/(x-2)) ,then f(2) is (a) 0 (b) 2 (c) 4

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime)(x^2) for all real xdot Given that f(1)=1 and f^(1)=8 , then the value of f^(prime)(1)+f^(1) is 2 b. 4 c. 6 d. 8

The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime)(x^2) for all real xdot Given that f(1)=1 and f^(1)=8 , then the value of f^(prime)(1)+f^(1) is 2 b. 4 c. 6 d. 8

If f(x)=(25-x^(4))^(1 / 4) for 0ltxltsqrt(5 ), then f(f((1)/(2))) =