Home
Class 12
MATHS
What is the value of tan^(-1)((m)/(n))-t...

What is the value of `tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))` ?

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ["tan"^(-1)(m)/(n)-tan^(-1)((m-n)/(m+n))] is -

tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=?

Prove that tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))=(pi)/(4).

Show that 'tan ^(-1) (m/n)-tan ^(-1) ((m-n)/(m+n))=pi/4'

tan^(-1)""(m)/(n)-tan^(-1)""(m-n)/(m+n) is equal to a) tan^(-1)""(n)/(m) b) tan^(-1)""(m+n)/(m-n) c) (pi)/(4) d) tan^(-1)((1)/(2))

Prove that: "tan"^(-1)(m)/(n)-tan^(-1)((m-n)/(m+n))=(pi)/(4). m, n gt 0

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=pi/4

Prove that: tan^(-1)((m)/(n))+tan^(-1)((n-m)/(n+m))=[(pi)/(4)(m)/(n)>;-1(-3 pi)/(4)(m)/(n)<-1