Home
Class 12
MATHS
Find the volume of the parallelopiped wh...

Find the volume of the parallelopiped whose edges are represented by `veca=vec(2i)-vec(3j)+vec4k, vecb=veci+vec(2j)-veck and vecc=vec(3i)-vecj+vec(2k)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the volume of the parallelopiped whose thre coterminus edges asre represented by vec(2i)+vec(3j)+veck, veci-vecj+veck, vec(2i)+vecj-veck .

Find the volume of the parallelopiped whose thre coterminus edges asre represented by vec(2i)+vec(3j)+veck, veci-vecj+veck, vec(2i)+vecj-veck .

Find the volume of the parallelopiped whose thre coterminus edges asre represented by veci+vecj+veck, veci-vecj+veck,veci+vec(2j)-veck .

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find the value of the constant lamda so that vectors veca=vec(2i)-vecj+veck, vecb=veci+vec(2j)-vec(3j), and vecc=vec(3i)+vec(lamdaj)+vec(5k) are coplanar.

Find the value of the constant lamda so that vectors veca=vec(2i)-vecj+veck, vecb=veci+vec(2j)-vec(3j), and vecc=vec(3i)+vec(lamdaj)+vec(5k) are coplanar.

If vec(a)= 2vec(i)-vec(j) +vec(k), vec(b)= 3vec(i) + 4vec(j) -vec(k) , then |vec(a) xx vec(b)|=

Find the volume of the Parallelopiped whose coterminous edges are represented by the vectors vec a = 2 hat i- 3 hat j + 4 hat k, vec b= hat i +2 hat j- hat k and vec c = 3 hat i -hat j +2 hat k .

Find the volume of a parallelopiped whose edges are represented by the vectors vec a = 2 hat i -3 hat j -4 hat k and vec b = hat i +2 hat j - hat k and vec c = 3 hat i + hat j + 2 hat k .