Home
Class 12
MATHS
int(-2)^(2)min(x-[x],-x-[-x])dx...

int_(-2)^(2)min(x-[x],-x-[-x])dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-2)^2min(x-[x],-x-[-x])dx equals, where [ x ] represents greatest integer less than or equal to x.

int_(-2)^2min(x-[x],-x-[-x])dx equals, where [ x ] represents greatest integer less than or equal to x. A. 2 B. 1 C. 4 D. 0

int_(-2)^(+2){x-[x]}dx

int_(-2)^(2) ( x -|x|)dx=

int_(0)^(2)x^(2)[x]dx

If [x] denotes the integral part of x and f(x)=min(x-[x],-x-[-x]) show that: int_-2^2f(x)dx=1

If [x] denotes the integral part of x and f(x)=min(x-[x],-x-[-x]) show that: int_-2^2f(x)dx=1

int_(-2)^(2)(|x|)/(x)dx=?

int_(0)^(2)x^(2)[x]dx=