Home
Class 12
MATHS
If omega is the complex cube root of uni...

If `omega` is the complex cube root of unity, then prove that `|[1,1,1],[1,-1-omega^2,omega^2],[1,omega^2,omega^4]|=+-3sqrt3i`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then (1+omega^2)^4=

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is a complex cube root of unity.Show that Det[[1,omega,omega^(2)omega,omega^(2),1omega^(2),1,omega]]=0

If omega is a complex cube root of unity, then show that: (1 + omega)^3 - (1 + omega^2)^3 = 0

If omega is a complex cube root of unity, then (1-omega+(omega)^2)^3 =