Home
Class 12
MATHS
[" Q.2Let "],[qquad [M=[[sin^(4)theta,-1...

[" Q.2Let "],[qquad [M=[[sin^(4)theta,-1-sin^(2)theta],[1+cos^(2)theta,cos^(4)theta]]=alpha I+beta M^(-1)],[" where "alpha=alpha(theta)" and "beta=beta(theta)" are real numbers,and "l" is the "2times2" identity matrix.If "],[alpha^(*)" is the minimum of the set "{alpha(theta):theta in[0,2 pi)}" and "],[beta^(*)" is the minimum of the set "{beta(theta):theta in[0,2 pi)}]],[" then the value of "alpha^(*)+beta^(*)" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

M=[{:(sin^(4)theta,-1-sin^(2)theta),(1+cos^(2)theta,cos^(4)theta):}]=alphaI+betaM^(-1) Where alpha=alpha(theta) and beta=beta(theta) ar real numbers and I is an identity matric of 2xx2 if alpha^(**)= min of set {alpha(theta):thetain[0.2pi)} and beta^(**)= min of set {beta(theta):thetain[0.2pi)} Then value of alpha^(**)+beta^(**) is

M=[{:(sin^(4)theta,-1-sin^(2)theta),(1+cos^(2)theta,cos^(4)theta):}]=alphaI+betaM^(-1) Where alpha=alpha(theta) and beta=beta(theta) ar real numbers and I is an identity matric of 2xx2 if alpha^(**)= min of set {alpha(theta):thetain[0.2pi)} and beta^(**)= min of set {beta(theta):thetain[0.2pi)} Then value of alpha^(**)+beta^(**) is

If A=2 sin^2 theta - cos 2 theta and A in [alpha, beta] , then find the values of alpha and beta.

If A=2 sin^2 theta - cos 2 theta and A in [alpha, beta] , then find the values of alpha and beta.

If A=2sin^(2)theta-cos2 theta and A in[alpha,beta], then find the values of alpha and beta.

let f(theta)=(tan theta)/(1+tan theta) and alpha+beta=3(pi)/(4) the value of 2f(alpha)f(beta) is equal to

let f(theta)=(tan theta)/(1+tan theta) and alpha+beta=3(pi)/(4) the value of 2f(alpha)f(beta) is equal to

If alpha, beta are the roots of the quadratic equation x^(2)-2(1-sin 2theta) x-2 cos^(2) 2 theta=0, (theta in R) then find the minimum value of (alpha^(2)+beta^(2)) .

If cos theta = (cos alpha - cos beta)/(1-cos alpha cos beta) , then one of the values of tan((theta)/(2)) is