Home
Class 12
MATHS
" If "x sin(a+y)+sin a cos(a+y)=0," prov...

" If "x sin(a+y)+sin a cos(a+y)=0," prove that "(dy)/(dx)=(sin^(2)(a+y))/(sin a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)

If sin y=sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin (a + y) + sin a cos (a + y)= 0 , then prove that (dy)/(dx)= (sin^(2) (a + y))/(sin a)