Home
Class 11
MATHS
If sin(alpha+beta)sin(alpha-beta)=singam...

If `sin(alpha+beta)sin(alpha-beta)=singamma(2sinbeta+singamma),` where `0 < alpha,beta,gamma < pi,` then the straight line whose equation is `xsinalpha+ysinbeta-singamma=0` passes through point (a) `(1,1)` (b) `(-1,1)` (c) `(1,-1)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If "sin"(alpha + beta) "sin" (alpha-beta) = "sin" gamma(2"sin" beta + "sin"gamma) " where " 0 lt alpha, beta, lt pi, then the straight line whose equation is x "sin" alpha+y "sin" beta-"sin" gamma = 0 passes through the point

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))sin((beta+gamma)/(2))sin((gamma+alpha)/(2))

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

If : (1-sin alpha)(1-sin beta)(1-singamma)=(1+sinalpha)(1+sin beta)(1+sin gamma), then one value of each side is

If sin(alpha+beta)=1 and sin(alpha-beta)=(1)/(2), where 0<=,beta<=(pi)/(2) ,then find the values of tan(alpha+2 beta) and tan(2 alpha+beta)

Prove the following: "sin" alpha+"sin" beta+"sin" gamma-"sin"(alpha+beta+gamma)=4"sin"(alpha+beta)/(2)"sin"(beta+gamma)/(2)"sin"(gamma+alpha)/(2)

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))*sin((beta+gamma)/(2))*sin((gamma+alpha)/(2))