Home
Class 11
MATHS
L=lim(x rarr-oo)(x+1-sqrt(ax^(2)+x+3))" ...

L=lim_(x rarr-oo)(x+1-sqrt(ax^(2)+x+3))" exists finitely then "

Promotional Banner

Similar Questions

Explore conceptually related problems

If L=lim_(x to oo) (x+1-sqrt(ax^(2)+x+3)) exists finitely then The value of L is

If L=lim_(x to oo) (x+1-sqrt(ax^(2)+x+3)) exists finitely then The value of L is

lim_(x rarr oo)(x( sqrt(1+x^(2))-x))

If L=lim_(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The value of a is

If L=lim_(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The value of a is

If L=lim_(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The value of a is

If L=lim_(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The value of a is

lim_(x rarr+oo)x(sqrt(x^(2)+1)-x)

lim_ (x rarr oo) (x-sqrt (x ^ (2) + x))

lim_(x rarr oo)sqrt(x+1)-sqrt(x)