Home
Class 12
MATHS
((x-4)^(2005).(x+8)^(2008).(x+1))/(x^200...

`((x-4)^(2005).(x+8)^(2008).(x+1))/(x^2006 (x-2)^3(x+3)^5.(x-6)(x+9)^2010)<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

((x-4)^(2005)*(x+8)^(2008)(x+1))/(x^(2006)(x-2)^(3)*(x+3)^(5)0(x-6)(x+9)^(2010))<=0

((x-4)^(2005)dot(x+8)^(2008)(x+1))/(x^(2006)(x-2)^3dot(x+3)^5 0(x-6)(x+9)^(2010))lt=0

Consider the inequations: ((x-4)^(2005)dot(x+8)^(2008)(x+1))/(x^(2006)(x-2)^3dot(x+3)^5dot(x-6)(x+9)^(2010))lt=0 and 2+3/(x+1)>2/x The interval(s) which cannot be the solution of the given inequations is/are (1, 2) (b) (-2,-1) (0,1) (d) [4,6]

Consider the inequations: ((x-4)^(2005)dot(x+8)^(2008)(x+1))/(x^(2006)(x-2)^3dot(x+3)^5dot(x-6)(x+9)^(2010))lt=0 and 2+3/(x+1)>2/x Number of positive integers satisfying both the inequations are 1 (b) 2 (c) 3 (d) 5

The coefficient of x^(1007) in the expansion (1+x)^(2006)+x(1+x)^(2005)+x^(2)(1+x)^(2004)x^(3)(1+x)^(2003)+....+x^(2000)

6(3x+2)-5(6x-1)=3(x-8)-5(7x-6)+9x

The coefficient of x^1007 in the expansion (1+x)^(2006)+x(1+x)^(2005)+x^2(1+x)^(2004)x^3(1+x)^(2003)+..... +x^(2006) is

For x!=0,+-1, the expression (((1)/(x^(2007))-(1)/(x^(2009)))/((1)/(x^(2008))-(1)/(x^(2010)))) is

Check whether the following are quadratic equations : (1) (x-3)^(2)=x(2x-5) (2) (2x-3)(8x+1) = (4x+5)(4x-5) (3) (5x+3)(x-2)=(4x+3)(2x-1) (4) (2x+5)^(3)=8(x-1)^(3) (5) x^(2)+7x-8=x(x+5) (6) x^(3)+9x^(2)-7x+2=(x+3)^(3)

(6x-7)/(2)+(9-2x)/(5)=12+(x)/(4)-(2)/(3)+(4x)/(3)