Home
Class 12
MATHS
sqrt(sin x)...

sqrt(sin x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt(|sin x|+sin x)) is

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

(cot^(-1){sqrt(1+sin x)+sqrt(1-sin x)})/(sqrt(1+sin x)-sqrt(1-sin x))

Find the value of cot^(-1)[(sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x))]

the expression ((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=

cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2);x in(0,(pi)/(4))

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

Prove that : cot^-1[(sqrt(1+sin x) + sqrt(1-sin x))/(sqrt1+sin x + sqrt(1-sin x))] = x/2, x in (0, pi/4)