Home
Class 10
MATHS
Let a sequence be defined by a1=1,a2=1 ...

Let a sequence be defined by `a_1=1,a_2=1` and `a_n=a_(n-1)+a_(n-2)` for all `n >2,` Find `(a_(n+1))/(a_n)` for `n=1,2,3, 4.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a sequence be defined by a_(1)=1,a_(2)=1 and a_(n)=a_(n-1)+a_(n-2) for all n>2, Find (a_(n+1))/(a_(n)) for n=1,2,3,4

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_n =a_(n-1)+a_(n-2) , n gt 2 Find (a_(n+1))/a_n for n = 1, 2, 3, 4, 5

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_n =a_(n-1)+a_(n-2) , n gt 2 Find (a_(n+1))/a_n for n = 1, 2, 3, 4, 5

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_n =a_(n-1)+a_(n-2) , n gt 2 Find (a_(n+1))/a_n for n = 1, 2, 3, 4, 5

The Fibonacci sequence is defined by a_1=1=a_2,\ a_n=a_(n-1)+a_(n-2) for n > 2. Find (a_(n+1))/(a_n) for n=1,2,3,4, 5.

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2),n >2 . Find (a_(n+1))/(a_n), for n = 1, 2, 3, 4, 5.

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2),n >2 . Find (a_(n+1))/(a_n), for n = 1, 2, 3, 4, 5.

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2),n >2 . Find (a_(n+1))/(a_n), for n = 1, 2, 3, 4, 5.