Home
Class 11
MATHS
sin alpha=(1)/(sqrt(5))" and "sin beta=(...

sin alpha=(1)/(sqrt(5))" and "sin beta=(1)/(sqrt(10))," then find "(alpha+beta)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin alpha=(1)/(sqrt(10)) and sin beta=(1)/(sqrt(5)) then prove that alpha+beta=(pi)/(4)

If sin alpha=(1)/(sqrt(5)) and sin beta=(3)/(5), then beta-alpha lies in

If cos alpha=(1)/(sqrt(2)),sin beta=(1)/(sqrt(3)), show that tan((alpha+beta)/(2))cot((alpha-beta)/(2))=5+2sqrt(6) or 5-2sqrt(6)

alpha=(1)/(sqrt(10))*sin beta=(1)/(sqrt(5)) (where alpha,beta and alpha+beta are positive acute angles) show that alpha+beta=(pi)/(4)

If sin alpha=(3)/(sqrt(73)),cos beta=(11)/(sqrt(146)) where alpha,beta in[0,(pi)/(2)] then (alpha+beta) is equal to-

If alpha and beta are angles in the first quadrant sucn than tan alpha = 1/7 and sin beta = (1)/(sqrt10) , then alpha + 2 beta =

If sin alpha=(3)/(5) and cos beta=(9)/(41) find the value of sin(alpha-beta) and cos(alpha+beta)

If alpha and beta are acute angles and sin alpha = (3)/(5) , sin beta = (8)/( 17), find the values of sin ( alpha + beta), cos (alpha pm beta), and tan ( alpha pm beta).

If : sin (alpha + beta)=1 and sin (alpha-beta)=(1)/(2), "then" : tan (alpha+2beta)*tan(2alpha+beta)=