Home
Class 12
MATHS
Given that logax=1/alpha, logbx=1/beta a...

Given that `log_ax=1/alpha, log_bx=1/beta` and `log_cx=1/gamma` Then find `log_(abc) x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that log_(a)x=(1)/(alpha),log_(b)x=(1)/(beta) and log_(c)x=(1)/(gamma) Then find log_(abc)x

if log_(a)x=(1)/(alpha),log_(b)x=(1)/(beta),log_(c)x=y then log_(abc)x

Given log_(a) x=alpha, log _(b) x=beta, log_(c)x =gamma & log_(d) x=delta(x ne 1), a,b,c,d in R^(+)-{1}" then "log_(abcd)x then the value equal to:

Given that log_(p)x=alpha and log_(q)x=beta, then value of log_((p)/(q))x equals

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_(6)15 = alpha, log_(12)18= beta and log_(25)24 = gamma , then prove that gamma = (5 - beta)/(2(alphabeta+alpha-2beta+1))

Prove that: log_ax xxlog_by=log_bx xxlog_ay