Home
Class 12
MATHS
[" 42."sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2...

[" 42."sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2))=?],[" (a) "(pi)/(4)-(1)/(2)cos^(-1)xquad " (b) "(pi)/(4)+(1)/(2)cos^(-1)x]

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]=

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

int_(0)^(1)sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))dx

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/2}=pi/2-(sin^(-1)x)/2,""0 < x < 1

(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]

Prove that sin^(-1). ((x + sqrt(1 - x^(2)))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

solve : tan^(-1) sqrt(x(x+1))+sin ^(-1) (sqrt(1+x+x^(2)))=(pi)/(2)

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)