Home
Class 12
MATHS
(1)/(2sqrt(x(1-x)))...

(1)/(2sqrt(x(1-x)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))

If y = 1/2 "Cosech"^(-1)((1)/(2 x sqrt(1+x))) , then x =

if y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)] then prove that (1)/(2sqrt(x)sqrt(1-x))

The expression (1)/(sqrt(x+2sqrt(x-1)))+(1)/(sqrt(x-2sqrt(x-1))) simplifies to:

The expression (1)/(sqrt(x+2sqrt(x-1)))+(1)/(sqrt(x-2sqrt(x-1))) simplifies to:

tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))],|x|<(1)/(2),x!=0

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))