Home
Class 14
MATHS
Find the value of 1/(2xx3)+1/(3xx4)+1...

Find the value of `1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+\ ddot+1/(9xx10)` .

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10) ...... upto 20 terms, then what is the value of A? यदि 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10).....20 पदों तक हो, तो A का मान क्या है?

What is the value of (1xx 2 +2xx 3-3xx 4 +4xx 5 -5 xx 6 +6 xx 7) ?

The simplest value of (1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+backslash+(1)/(9xx10) is (1)/(10) (b) (9)/(10) (c) 1 (d) 10

1/2xx 5/4 + 6/8 xx 10/9

Find the sum of infinite series (1)/(1xx3xx5)+(1)/(3xx5xx7)+(1)/(5xx7xx9)+….

What is the value of (1xx2+2xx3-3xx4+4xx5-5xx6+6xx7) ? (1xx2+2xx3-3xx4+4xx5-5xx6+6xx7) का मान क्या होगा ?

Evaluate [((-2)/3)]^(-3)xx[1/4]^(-4) xx 3^(-1)xx1/6

Find the value of the expression (10^(-1)xx5^(x-3)xx4^(x-1))/(10xx5^(x-5)xx4^(x-2))