Home
Class 14
MATHS
The value of [1+ 1/(x+1)][1+1/(x+2)][...

The value of `[1+ 1/(x+1)][1+1/(x+2)][1+1/(x+3)][1+1/(x+4)]` is (a) `(x+5)/(x+1)` (b) `(x+1)/(x+5)` (c) `1+1/(x+5)` (d) `1/(x+5)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-1) / (2x + 1) + (2x + 1) / (x-1) = (5) / (2), x! =-(1) / (2), 1

The value of (1-x^4)/(1+x)+(1+x^2)/xxx1/(x(1-x)) is (a) 1 (b) 1-x^2 (c) 1/x (d) 1+x (e) None of these

(3)/(x+1)-(2)/(x-1)=(5)/(x^(2)-1)

Add: (3x^(2) - (1)/(5)x + (7)/(3)) + ((-1)/(4)x^(2) + (1)/(3)x - (1)/(6)) + (-2x^(2) - (1)/(2)x + 5)

If x+ (1)/(x)=3 , then x^(5) + (1)/(x^(5)) = ?

The value of lim_(x rarr oo)(3^(x+1)-5^(x+1))/(3^(x)-5^(x))=5

The maximum value of f(x)=(x)/(4-x+x^(2)) on [-1,1] is (a) (1)/(4)(b)-(1)/(3)(c)(1)/(6)(d)(1)/(5)

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,