Home
Class 14
MATHS
(a^2-b^2-2b c-c^2)/(a^2+b^2+2a b-c^2) is...

`(a^2-b^2-2b c-c^2)/(a^2+b^2+2a b-c^2)` is equivalent to `(a-b+c)/(a+b+c)` (b) `(a-b-c)/(a-b+c)` (c) `(a-b-c)/(a+b-c)` (d) `(a+b+c)/(a-b+c)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle A B C angle B=90^0 then tan^2(A/2) is (b-c)/a (b) (b-c)/(b+c) (c) (b+c)/(b-c) (d) (b+c)/a

((a+b+c)^(a+b)(a+b+c)^(b+c)(a+b+c)^(c+a))/([(a+b+c)^(a) (a+b+c)^(b) (a+b+c)^(c)]^(2))

((a+b+c)^(a+b)(a+b+c)^(b+c)(a+b+c)^(c+a))/([(a+b+c)^(a)(a+b+c)^(b)(a+b+c)^(c)]^(2))

If a^(2) +b^(2) +c^(2) = ab + bc + ca then ((a+b)/(c ) + (b+c)/(a) + (c+a)/(b)) ((c )/(a+b) + (b)/(a+c) + (c )/(a+b)) =?

If a,b,c gt 0, then (a )/(2a + b +c ) = (b)/(a + 2b +c)= (c )/(a +b + 2c) = ?

((a+b)^(2))/((b-c)(c-a))+((b+c)^(2))/((a-b)(c-a))+((c+a)^(2))/((a-b)(b-c))

Find the value of ((a+b)^(2))/((b-c)(c-a))+((b+c)^(2))/((a-b)(c-a))+((c+a)^(2))/((a-b)(b-c))